The Andrew & Erna Viterbi Faculty of Electrical Engineering Technion — Israel Institute of Technology

Electronics Computers Communications

Vision and Image Sciences Laboratory

Final Presentation

Turbulence Simulator

Students: Simon Shvarts, Lidor Malul

Supervisor: Marina Alterman

Context: Project A Semester: Spring 2018 Date: 20/02/19

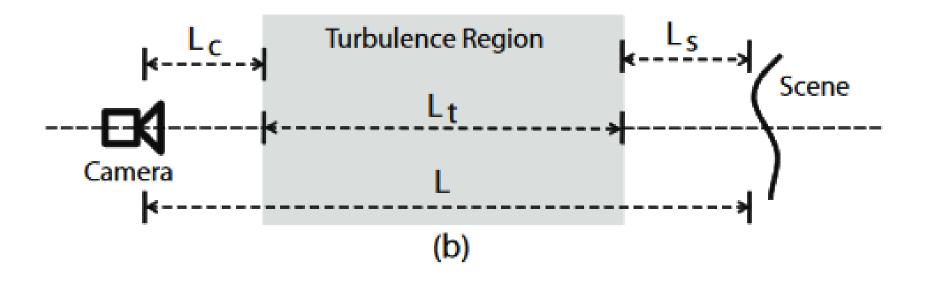
In Collaboration with: RAFAEL

Presentation Outline

- Project goal
- Background
- Optional solution
- Chosen solution
- Results
- Summary
- Conclusions

Project Goal

- Simulate distortion of an image caused by atmospheric turbulence using given parameters of user input.
- Create a video from simulated images.
- Create a data base of pictures affected by turbulence for machine learning algorithm.


Background

• A long-distance imaging system can be strongly affected by atmospheric turbulence.

- random changes of the refractive index along the optical transmission path.
- causes geometric distortion (motion), space and time-varying blur.

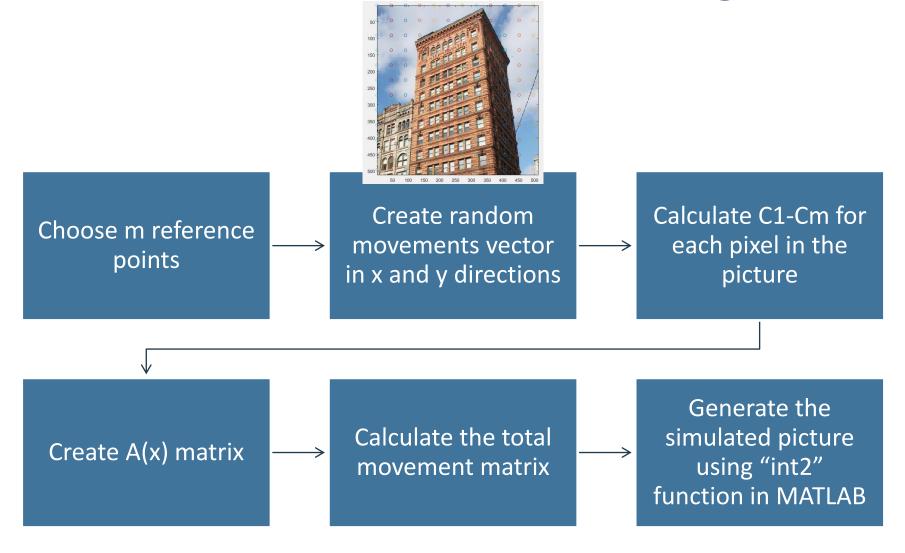
Physical Background

Physical Background

- Turbulence strength is determined by Cn
- Cn is function of temperature, pressure and more.

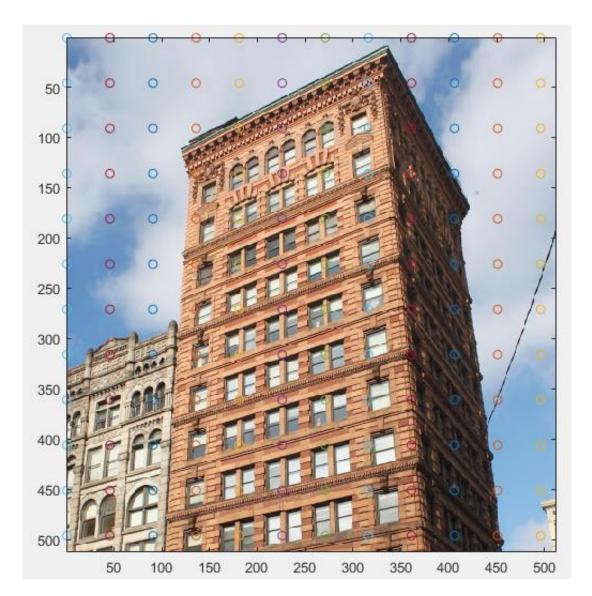
•
$$\langle \alpha^2 \rangle = 2.914 \mathrm{D}^{-\frac{1}{3}} \int_0^L C_n^2(z) \cdot \left(\frac{z}{L}\right)^{\frac{5}{3}} dz$$

- α is the arrival angle.
- D is the camera's aperture.



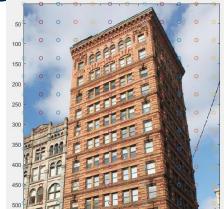
Optional Solutions

- Random pixel movements
- Milanfar algorithm statictical and physical



Milanfar solution: Block Diagram

Choose m points in a picture



β(

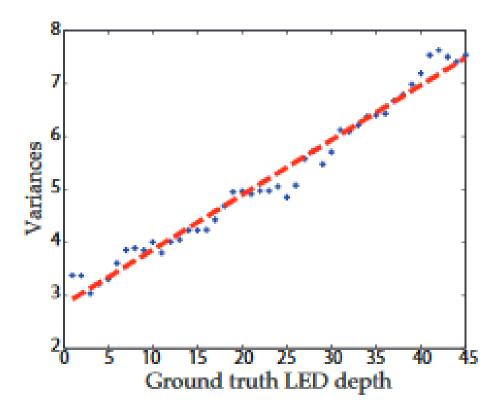
Milanfar solution: details

- Choose m points
- Draw movements vector p



Calculate Ci for every pixel and calculate A(x)

Take distance into consideration


- Using a distance map
- Calculate variance by distance of pixel

Take distance into consideration

- Based on the article's we read
- Liner connection between depth and var

Blur caused by turbulence

- The blur can be modeled by a overall optical transfer function (OTF)
- The OTF include the atmospheric OTF and the diffraction OTF.
- The overall OTF is giving by:

$$H(\rho) = H_{\rm atm}(\rho) H_{\rm dif}(\rho)$$
$$_{H_{\rm dif}(\rho) = \begin{cases} \frac{2}{\pi} \left[\cos^{-1} \left(\frac{\rho}{2\rho_c} \right) - \frac{\rho}{2\rho_c} \sqrt{1 - \left(\frac{\rho}{2\rho_c} \right)^2} \right], & \rho \le \rho_c \\ 0, & \text{otherwise} \end{cases}$$

$$H_{\rm atm}(\rho) = \exp\left\{-3.44 \left(\frac{\lambda l\rho}{r_0}\right)^{5/3} \left[1 - \alpha \left(\frac{\lambda l\rho}{D}\right)^{1/3}\right]\right\},\,$$

Blur caused by turbulence

• The overall OTF is giving by:

 $H(\rho) = H_{\rm atm}(\rho)H_{\rm dif}(\rho)$

• The atmospheric OTF is giving by:

$$H_{\rm atm}(\rho) = \exp\left\{-3.44 \left(\frac{\lambda l\rho}{r_0}\right)^{5/3} \left[1 - \alpha \left(\frac{\lambda l\rho}{D}\right)^{1/3}\right]\right\},\,$$

• The diffraction OTF is giving by:

$$H_{\rm dif}(\rho) = \begin{cases} \frac{2}{\pi} \left[\cos^{-1} \left(\frac{\rho}{2\rho_c} \right) - \frac{\rho}{2\rho_c} \sqrt{1 - \left(\frac{\rho}{2\rho_c} \right)^2} \right], & \rho \le \rho_c \\ 0, & \text{otherwise} \end{cases}$$

GUI

- We created simulator using GUI.
- Simulator tool for the user.
- Fast and convenient. (GUI VIDEO)

Non linear regression			
😂 🛃 🖑 🔍 🥄			
Problem Setup Solver: niinfit (univariate)	•	File	About Non linear regression GUI by Pablo Marin (University of Oviedo)
Problem	Display iter	Results Error variance: 0.00147	893 Covariance matrix:
	Use actual	Parameters 95% conf 1 125.7884 2 2.7289e+03	I 2 102.2535 1 2.2403e+03 6.4297e+03 294.8941 2 6.4297e+03 1.8633e+04
Y Data Problem.Ydata	Plot	0.1	1
Run Solver	Auto		0 0.8 0.6 5 0.6 0.4 0.4 0.2 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		-0.1 0.5 1 Y Data	1.5 0 0.5 1 Y Data

Problem with Time complexity

- The simulation took about 6 minutes.
- After some improvements 4 seconds.
- 0.01% of the initial time.

lon linear regression 🗃 🖵 🖑 🔍 🔍		
Solver: niinfit (univariate)	File Same: Ex_uni	About Non linear regression GUI by Pablo Marin (University of Oviedo)
Robust Display iter Problem Model: Ex_uni	Results Error variance: 0.00147893	Covariance matrix:
Start point: Problem.a0 Use actual	Parameters 95% conf. intervals 1 125.7884 102.2535 2 2.7289e+03 294.8941	1 2 1 2.2403e+03 6.4297e+03 2 6.4297e+03 1.8633e+04
Y Data Problem.Ydata Que Auto	0.1	
- Run Solver		0.8 0.6 W > 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
File Ex_uni opened	-0.05	0.2 .5 0 0.5 Y Data

Creating Video

- Considering all of the previous we created a video.
- Compering this video to real turbulence video provided by Rafael.

Time smoothing

- In order to create more "Realistic" videos we need to activate time smoothing on the video
- We used mean filter on the frames of the video

Results distance effect – original Image

Results – distance effect (80m)

After - Cn²=5e-16,f=1.2[m],D=0.2[m] Dist=80[m]

Results – distance effect (330m)

After - Cn²=5e-16,f=1.2[m],D=0.2[m] Dist=330[m]

Results – distance effect (580m)

After - Cn²=5e-16,f=1.2[m],D=0.2[m] Dist=580[m]

Results – distance effect (830m)

After - Cn²=5e-16,f=1.2[m],D=0.2[m] Dist=830[m]

Results – distance effect (980m)

After - Cn²=5e-16,f=1.2[m],D=0.2[m] Dist=980[m]

Results – distance effect (1590)

After - Cn²=5e-16,f=1.2[m],D=0.2[m] Dist=1590[m]

Results – Cn effect original image

Results – Cn effect –(1e-16)

After - Cn²=1e-16,f=1.2[m],D=0.2[m]

Results – Cn effect –(2e-16)

After - Cn²=2e-16,f=1.2[m],D=0.2[m]

Results – Cn effect –(3e-16)

After - Cn²=3e-16, f=1.2[m], D=0.2[m]

Results – Cn effect –(4e-16)

After - Cn²=4e -16, f=1.2[m], D=0.2[m]

Results – Cn effect –(5e-16)

After - Cn²=5e-16,f=1.2[m],D=0.2[m]

Checking goodness

- Video from Raphael.
- Avg on video to get clear frame.
- Distort using our simulation.

Rafael Video – dis 1500m

Simulated video

Quantitative Comparison

- Using sophisticated algorithm for tracking pixels.
- Calculating var of pixel movements.
- Var for real video : var.x= 0.301 var.y = 0.441
- Var for simulate video : var.x= 0.175 var.y=0.233

• Results are fantastic!

Summary

- We have managed to apply "statistic" turbulence.
- We will apply a physical model in the future.
- We will create a GUI.
- If time allows we'll make the system capable of handling with videos and apply blur.

Conclusions

- We have learned that as the number of reference points grows up (Milanfar), the image distortion level grows.
- Milanfar solution is a good statistical solution.
- In the future simulate more physical distortion for better results.

References

- [1] Endre Repasi and Robert Weiss, "Computer Simulation of Image Degradations by Atmospheric Turbulence for Horizontal Views", 2011
- [2] Peyman Milanfar, "Removing Atmospheric Turbulence via Space-Invariant Deconvolution", 2013